193 lines
		
	
	
		
			7.4 KiB
		
	
	
	
		
			PHP
		
	
	
	
	
	
			
		
		
	
	
			193 lines
		
	
	
		
			7.4 KiB
		
	
	
	
		
			PHP
		
	
	
	
	
	
| <?php
 | |
| /*
 | |
|  * Copyright 2007 ZXing authors
 | |
|  *
 | |
|  * Licensed under the Apache License, Version 2.0 (the "License");
 | |
|  * you may not use this file except in compliance with the License.
 | |
|  * You may obtain a copy of the License at
 | |
|  *
 | |
|  *      http://www.apache.org/licenses/LICENSE-2.0
 | |
|  *
 | |
|  * Unless required by applicable law or agreed to in writing, software
 | |
|  * distributed under the License is distributed on an "AS IS" BASIS,
 | |
|  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
|  * See the License for the specific language governing permissions and
 | |
|  * limitations under the License.
 | |
|  */
 | |
| 
 | |
| namespace Zxing\Common\Reedsolomon;
 | |
| 
 | |
| /**
 | |
|  * <p>Implements Reed-Solomon decoding, as the name implies.</p>
 | |
|  *
 | |
|  * <p>The algorithm will not be explained here, but the following references were helpful
 | |
|  * in creating this implementation:</p>
 | |
|  *
 | |
|  * <ul>
 | |
|  * <li>Bruce Maggs.
 | |
|  * <a href="http://www.cs.cmu.edu/afs/cs.cmu.edu/project/pscico-guyb/realworld/www/rs_decode.ps">
 | |
|  * "Decoding Reed-Solomon Codes"</a> (see discussion of Forney's Formula)</li>
 | |
|  * <li>J.I. Hall. <a href="www.mth.msu.edu/~jhall/classes/codenotes/GRS.pdf">
 | |
|  * "Chapter 5. Generalized Reed-Solomon Codes"</a>
 | |
|  * (see discussion of Euclidean algorithm)</li>
 | |
|  * </ul>
 | |
|  *
 | |
|  * <p>Much credit is due to William Rucklidge since portions of this code are an indirect
 | |
|  * port of his C++ Reed-Solomon implementation.</p>
 | |
|  *
 | |
|  * @author Sean Owen
 | |
|  * @author William Rucklidge
 | |
|  * @author sanfordsquires
 | |
|  */
 | |
| final class ReedSolomonDecoder {
 | |
| 
 | |
|     private $field;
 | |
| 
 | |
|     public function __construct($field) {
 | |
|         $this->field = $field;
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * <p>Decodes given set of received codewords, which include both data and error-correction
 | |
|      * codewords. Really, this means it uses Reed-Solomon to detect and correct errors, in-place,
 | |
|      * in the input.</p>
 | |
|      *
 | |
|      * @param received data and error-correction codewords
 | |
|      * @param twoS number of error-correction codewords available
 | |
|      * @throws ReedSolomonException if decoding fails for any reason
 | |
|      */
 | |
|     public function decode(&$received, $twoS)  {
 | |
|         $poly = new GenericGFPoly($this->field, $received);
 | |
|         $syndromeCoefficients = fill_array(0,$twoS,0);
 | |
|         $noError = true;
 | |
|         for ($i = 0; $i < $twoS; $i++) {
 | |
|             $eval = $poly->evaluateAt($this->field->exp($i + $this->field->getGeneratorBase()));
 | |
|             $syndromeCoefficients[count($syndromeCoefficients) - 1 - $i] = $eval;
 | |
|             if ($eval != 0) {
 | |
|                 $noError = false;
 | |
|             }
 | |
|         }
 | |
|         if ($noError) {
 | |
|             return;
 | |
|         }
 | |
|         $syndrome = new GenericGFPoly($this->field, $syndromeCoefficients);
 | |
|         $sigmaOmega =
 | |
|             $this->runEuclideanAlgorithm($this->field->buildMonomial($twoS, 1), $syndrome, $twoS);
 | |
|         $sigma = $sigmaOmega[0];
 | |
|         $omega = $sigmaOmega[1];
 | |
|         $errorLocations = $this->findErrorLocations($sigma);
 | |
|         $errorMagnitudes = $this->findErrorMagnitudes($omega, $errorLocations);
 | |
|         for ($i = 0; $i < count($errorLocations); $i++) {
 | |
|             $position = count($received) - 1 - $this->field->log($errorLocations[$i]);
 | |
|             if ($position < 0) {
 | |
|                 throw new ReedSolomonException("Bad error location");
 | |
|             }
 | |
|             $received[$position] = GenericGF::addOrSubtract($received[$position], $errorMagnitudes[$i]);
 | |
|         }
 | |
| 
 | |
|     }
 | |
| 
 | |
|     private function runEuclideanAlgorithm($a, $b, $R)
 | |
|     {
 | |
|         // Assume a's degree is >= b's
 | |
|         if ($a->getDegree() < $b->getDegree()) {
 | |
|             $temp = $a;
 | |
|             $a = $b;
 | |
|             $b = $temp;
 | |
|         }
 | |
| 
 | |
|         $rLast = $a;
 | |
|         $r = $b;
 | |
|         $tLast = $this->field->getZero();
 | |
|         $t = $this->field->getOne();
 | |
| 
 | |
|         // Run Euclidean algorithm until r's degree is less than R/2
 | |
|         while ($r->getDegree() >= $R / 2) {
 | |
|             $rLastLast = $rLast;
 | |
|             $tLastLast = $tLast;
 | |
|             $rLast = $r;
 | |
|             $tLast = $t;
 | |
| 
 | |
|             // Divide rLastLast by rLast, with quotient in q and remainder in r
 | |
|             if ($rLast->isZero()) {
 | |
|                 // Oops, Euclidean algorithm already terminated?
 | |
|                 throw new ReedSolomonException("r_{i-1} was zero");
 | |
|             }
 | |
|             $r = $rLastLast;
 | |
|             $q = $this->field->getZero();
 | |
|             $denominatorLeadingTerm = $rLast->getCoefficient($rLast->getDegree());
 | |
|             $dltInverse = $this->field->inverse($denominatorLeadingTerm);
 | |
|             while ($r->getDegree() >= $rLast->getDegree() && !$r->isZero()) {
 | |
|                 $degreeDiff = $r->getDegree() - $rLast->getDegree();
 | |
|                 $scale = $this->field->multiply($r->getCoefficient($r->getDegree()), $dltInverse);
 | |
|                 $q = $q->addOrSubtract($this->field->buildMonomial($degreeDiff, $scale));
 | |
|                 $r = $r->addOrSubtract($rLast->multiplyByMonomial($degreeDiff, $scale));
 | |
|             }
 | |
| 
 | |
|             $t = $q->multiply($tLast)->addOrSubtract($tLastLast);
 | |
| 
 | |
|             if ($r->getDegree() >= $rLast->getDegree()) {
 | |
|                 throw new IllegalStateException("Division algorithm failed to reduce polynomial?");
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         $sigmaTildeAtZero = $t->getCoefficient(0);
 | |
|         if ($sigmaTildeAtZero == 0) {
 | |
|             throw new ReedSolomonException("sigmaTilde(0) was zero");
 | |
|         }
 | |
| 
 | |
|         $inverse = $this->field->inverse($sigmaTildeAtZero);
 | |
|         $sigma = $t->multiply($inverse);
 | |
|         $omega = $r->multiply($inverse);
 | |
|         return array($sigma, $omega);
 | |
|     }
 | |
| 
 | |
|     private function findErrorLocations($errorLocator) {
 | |
|         // This is a direct application of Chien's search
 | |
|         $numErrors = $errorLocator->getDegree();
 | |
|         if ($numErrors == 1) { // shortcut
 | |
|             return array($errorLocator->getCoefficient(1) );
 | |
|         }
 | |
|         $result = fill_array(0,$numErrors,0);
 | |
|         $e = 0;
 | |
|         for ($i = 1; $i < $this->field->getSize() && $e < $numErrors; $i++) {
 | |
|             if ($errorLocator->evaluateAt($i) == 0) {
 | |
|                 $result[$e] = $this->field->inverse($i);
 | |
|                 $e++;
 | |
|             }
 | |
|         }
 | |
|         if ($e != $numErrors) {
 | |
|             throw new ReedSolomonException("Error locator degree does not match number of roots");
 | |
|         }
 | |
|         return $result;
 | |
|     }
 | |
| 
 | |
|     private function findErrorMagnitudes($errorEvaluator, $errorLocations) {
 | |
|         // This is directly applying Forney's Formula
 | |
|         $s = count($errorLocations);
 | |
|         $result = fill_array(0,$s,0);
 | |
|         for ($i = 0; $i < $s; $i++) {
 | |
|             $xiInverse = $this->field->inverse($errorLocations[$i]);
 | |
|             $denominator = 1;
 | |
|             for ($j = 0; $j < $s; $j++) {
 | |
|                 if ($i != $j) {
 | |
|                     //denominator = field.multiply(denominator,
 | |
|                     //    GenericGF.addOrSubtract(1, field.multiply(errorLocations[j], xiInverse)));
 | |
|                     // Above should work but fails on some Apple and Linux JDKs due to a Hotspot bug.
 | |
|                     // Below is a funny-looking workaround from Steven Parkes
 | |
|                     $term = $this->field->multiply($errorLocations[$j], $xiInverse);
 | |
|                     $termPlus1 = ($term & 0x1) == 0 ? $term | 1 : $term & ~1;
 | |
|                     $denominator = $this->field->multiply($denominator, $termPlus1);
 | |
|                 }
 | |
|             }
 | |
|             $result[$i] = $this->field->multiply($errorEvaluator->evaluateAt($xiInverse),
 | |
|                 $this->field->inverse($denominator));
 | |
|             if ($this->field->getGeneratorBase() != 0) {
 | |
|                 $result[$i] = $this->field->multiply($result[$i], $xiInverse);
 | |
|             }
 | |
|         }
 | |
|         return $result;
 | |
|     }
 | |
| 
 | |
| }
 |